
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out MoreGUIness from SVN

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

 class SavingsAccount extends BankAccount {

// added fields

// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

 Calling superclass method:

◦ super.methodName(args);

 Calling superclass constructor:

◦ super(args);

Must be the first
line of the subclass

constructor

 public—any code can see it

 private—only the class itself can see it

 default (i.e., no modifier)—only code in the
same package can see it

 protected—like default, but subclasses also
have access

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy
here…

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof

◦ Must compare state—use cast

 Example…

 Avoiding representation exposure:
◦ returning an object that lets other code muck with

our object’s state
public class Customer {

private String name;

private BankAccount acct;

…

public String getName() {

return this.name; // OK!

}

public BankAccount getAccount() {

return this.acct; // Rep. exposure!

}

}
Book says (controversiallly) to use

return (BankAccount) this.acct.clone();” Q3,4

 clone() is supposed to make a deep copy
1. Copy the object

2. Copy any mutable objects it points to

 Object’s clone() handles 1 but not 2

 Effective Java includes a seven page

description on overriding clone():
◦ “[You] are probably better off providing some

alternative means of object copying or simply not
providing the capability.”

Effective Java, by Joshua Block Q5,6

 Copy constructor in Customer:

◦ public Customer(Customer toBeCopied) {…}

 Copy factory in BankAccount:

◦ public abstract BankAccount getCopy();

 Fixed Example:

◦ public BankAccount getAccount() {

return this.acct.getCopy();

}

main() got complicated in
LinearLightsOut, better to
create a subclass…

